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Abstract The advent of RNA interference (RNAi) tech-

nology has profoundly impacted molecular biology

research and medicine but has also advanced the field of

skin care. Both effector molecules of RNAi, short-inter-

fering RNA molecules and microRNAs (miRNAs), have

been explored for their relative impact and utility for

treating a variety of skin conditions. These post-transcrip-

tional RNA regulatory molecules down-modulate protein

expression through targeting of the 30 untranslated regions

of messenger RNAs, leading to their degradation or

repression through sequestration. As researchers hunt for

genetic linkages to skin diseases, miRNA regulators have

emerged as key players in the biology of keratinocytes,

fibroblasts, melanocytes, and other cells of the skin.

Herein, we attempt to coalesce the current efforts to

combat various skin disorders and diseases through the

development of miRNA-based technologies.

Key Points

The relative contributions of various microRNAs to

the pathogenesis of an increasing number of skin

conditions have been elucidated as a result of

expanded microRNA profiling efforts.

Mimics and antagomiRs of microRNAs that have

been implicated in the pathogenesis of certain skin

diseases have been tested in vitro and in vivo as

therapeutic agents.

Both ultra-flexible liposomes and skin-penetrating

peptides complexed with microRNA-based

therapeutics have demonstrated utility as topical

delivery platforms capable of transporting

microRNAs across the skin barrier.

1 Introduction

1.1 Skin Disorders and Diseases

The skin represents the primary barrier protecting the body

from a horde of environmental insults. Among its many

functions, skin protects against pathogen invasion and

excessive water loss, provides sensation, facilitates the

production of vitamin D, provides insulation, and regulates

body temperature [1–4]. The skin can be grossly divided

into two layers: the outer epidermis and the inner dermis.

For the purposes of this review, we focus mostly on the

epidermal layer, which is composed primarily
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(approximately 95%) of keratinocytes but also melano-

cytes, inflammatory cells, Langerhans cells, and Merkel

cells [5].

Multiple skin disorders and diseases exist, and even a

brief overview of all known skin conditions would be a

herculean task. For the purposes of this review, we selected

several conditions primarily on the basis of the degree with

which microRNA (miRNA) involvement has been eluci-

dated. As mentioned, additional emphasis has been given

to disorders and diseases relevant to the epidermal layer of

the skin, including psoriasis, acne, dermatitis, pigmentation

disorders, skin aging, and ultraviolet (UV) light-induced

skin damage.

1.2 RNA Interference and MicroRNAs (miRNAs)

Within the past two decades, considerable advances have

been made in our understanding of the multi-faceted role

RNA plays in organismal biology as well as in the

molecular pathogenesis of multiple diseases. Indeed, there

has been an increase in the number of diversified forms of

RNA that have been identified. Beyond the triad of mes-

senger RNA (mRNA), transfer RNA (tRNA), and riboso-

mal RNA (rRNA) involved in the process of gene

expression, scientists have also discovered long non-coding

RNA (lncRNA), circular non-coding RNA (circRNA),

small nucleolar RNA (snoRNA), piwi-interacting RNA

(piRNA), and tRNA-derived stress-induced RNA (tiRNA),

to name a few (Fig. 1). Of interest to this review article are

two forms of small non-coding RNAs (ncRNAs): short-

interfering RNA (siRNA) and miRNA (or miR), with

emphasis given to miRNAs.

The first report describing the technology platform ter-

med RNA interference (or RNAi) in the context of

Caenorhabditis elegans, the common earthworm, was

published in 1998 by Andrew Fire and Craig Mello, both of

whom received the Nobel Prize in Physiology and Medi-

cine for their discovery [6–8]. Their seminal work descri-

bed a pathway found in many eukaryotes known as RNAi,

where small ncRNA molecules, of approximately 20

nucleotides (nts) in length, can knockdown expression of a

target gene through partial or full complementary binding

to an mRNA transcript, which culminates in the degrada-

tion of the mRNA or its translational repression.

The effector molecules of the RNAi pathway can be

found in two forms: siRNAs and miRNAs. There are sig-

nificant differences between how they are generated and

how they function [9]. siRNAs are frequently derived from

exogenous sources of double-stranded RNA (dsRNA) such

as dsRNA virus genomes, though they can also be gener-

ated from genomic sources endogenously. In contrast, the

precursors to miRNAs are expressed from the host genome

in a regulated manner akin to protein-coding genes.

Additionally, some miRNAs are delivered to the cell

cytoplasm via viral infection such as in the case of Epstein

Barr Virus. Moreover, siRNAs typically target a single

gene, whereas miRNAs have the potential to regulate

multiple gene targets [10]. Mature forms of both sets of

small ncRNAs are produced via a cytoplasmic enzyme

known as Dicer, which cleaves long dsRNA molecules into

small approximately 20-nt long double-stranded fragments

[11, 12]. These small double-stranded ncRNA fragments

then separate into what is termed the passenger strand and

the guide strand. The passenger strand is ultimately

degraded, whereas the guide strand is loaded into the RNA-

induced silencing complex (RISC), which contains a cat-

alytic protein called Argonaute (AGO) that is responsible

for the degradation of RNA transcripts that pair with the

guide strand. siRNAs exhibit full complementarity to their

target mRNA transcripts. In contrast, miRNAs only require

partial complementarity for the cognate mRNA molecules

that they bind through a region called the seed sequence

[13]. This sequence flexibility allows for a certain

promiscuity with respect to miRNA gene targets [10]. Like

their siRNA counterparts, miRNAs can down-regulate

gene expression by fating their bound mRNA transcripts

for degradation [14]. However, unlike siRNAs, miRNAs

can also affect a form of non-degradative translational

repression. Also dissimilar from siRNAs are the multiple

upstream biogenesis pathways for miRNAs [15].

As mentioned, several cellular pathways exist for the

biogenesis of miRNAs (Fig. 2), and such built-in redun-

dancy highlights the evolutionary significance of this mode

of post-transcriptional regulation of gene expression [15].

miRNAs typically start as a primary miRNA transcript (or

Fig. 1 Diverse roles for RNA. Schematic of the diversified roles for

various RNA molecules, including but not limited to messenger RNA

(mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), small

nucleolar RNA (snoRNA), piwi-interacting RNA (piRNA), tRNA-

derived stress-induced RNA (tiRNA), microRNA (miRNA), short

interfering RNA (siRNA), long non-coding RNA (lncRNA), and

circular non-coding RNA (circRNA). Emphasis is given to miRNAs

and siRNAs that are the primary focus of this review article
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pri-miRNA), approximately 1000 nts in length, encoded

within intergenic as well as within intronic and exonic

regions of the host genome [16]. The pri-miRNA is sub-

sequently processed via different mechanisms into a

shorter RNA molecule with a hairpin that is termed a pre-

miRNA. The pre-miRNA is then exported from the nucleus

to the cytoplasm via an exportin (XPO) molecule (most

commonly XPO5) [17], where the hairpin pre-miRNA is

cleaved into a double-stranded miRNA duplex by Dicer.

These series of steps have been well-characterized with

respect to what has been described as the canonical miRNA

biogenesis pathway, where the expressed pri-miRNA is

cleaved into the pre-miRNA hairpin via an enzymatic

microprocessor complex involving two key proteins:

drosha and digeorge critical region 8 (DGCR8) (Fig. 2)

[18–21]. Several alternative miRNA biogenesis pathways

exist, including but not limited to the mirtron pathway,

simtron pathway, methyl7G-capped pathway, and miR-451

pathway [22–25]. The mirtron pathway bypasses the pri-

miRNA to pre-miRNA cleavage induced by the Drosha/

DGCR8 microprocessor complex, where intronic pri-

miRNAs are spliced through the spliceosome complex into

pre-miRNAs that are exported to the cytoplasm [26].

Although they are mirtron-like, simtrons distinguish

themselves by how they do not require splicing for their

formation; nor do they require many of the key components

of most miRNA biogenesis pathways, including DGCR8,

XPO5, Dicer, and AGO2 [22]. The methyl7G-capped

pathway is distinct for several features, including a unique

precursor RNA (pre-miRNA) molecule that is capped by

7-methylguanosine, that is subsequently exported from the

nucleus by the PHAX-XPO1 or XPO5 transport pathways,

and whose resulting guide strand is heavily favored for the

3p mature miRNA [25]. Finally, the miR-451 pathway has

been characterized with respect to the titular singular

miRNA species: miR-451, which follows nearly all of the

same steps as the canonical pathway but is not processed

into a mature miRNA in the cytoplasm by Dicer, but rather

through the enzymatic activity of AGO2 [23, 24].

As with their siRNA counterparts, artificial miRNAs

(sometimes denoted as a miRNAs) have also been artifi-

cially designed to be complementary to specific recognition

sequences within mRNAs of cellular factors [27, 28].

Another strategy is to deploy so-called anti-miRNA inhi-

bitors or antagomiRs, which are chemically synthesized

miRNA passenger strands that have been altered to bind

the cognate cellular active strand irreversibly, producing an

miRNA duplex that can no longer participate in RISC

complex repression of a target gene, causing a gain-of-

function effect [29, 30]. Alternatively, chemically synthe-

sized mimics of naturally occurring miRNAs have also

been introduced in cell culture and certain in vivo systems

to modulate gene expression, often resulting in a loss-of-

function effect (also referred to as miRNA replacement

therapy) [30–32]. This approach essentially represents a

second-generation RNAi-based therapy. We will delve into

the expanding applications of miRNAs to characterize,

ameliorate, and potentially eradicate several skin

conditions.

1.3 miRNAs: Skin Therapy Applications

In recent years, the number of diseases with which miR-

NAs have been implicated has expanded dramatically, and

as such it is unsurprising that various skin disorders and

diseases have also found miRNA involvement. As of the

writing of this review article, more than 2000 mature

human miRNAs have been identified and curated in the

most current version of the miRNA online database called

miRbase (version 21) [33–35]. The bulk of miRNA

Fig. 2 Multiple miRNA

biogenesis pathways. Five

different pathways by which

mature microRNA molecules

are generated, including

canonical pathway, mirtron

pathway, simtron pathway, 50

methyl-guanosine pathway, and

miR-451 pathway. AGO

Argonaute proteins 1–4,

DGCR8 DiGeorge critical

region 8, RISC RNA-induced

silencing complex, XPO5

exportin 5
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discoveries with respect to skin conditions has centered on

various skin cancers such as melanomas. One such

important miRNA species is miR-203a, which has been

ascribed a tumor-suppressor role in combating melanoma

[36]. Another miRNA of interest to skin care is miR-29,

whose post-transcriptional regulatory function dovetails

with that of the tumor-suppressor protein p53 in the pro-

motion of skin aging [37, 38]. As the list of miRNAs

participating in the maintenance and dysregulation of skin

health continues to grow, research into the translation of

these discoveries into skin care applications will also

expand. Indeed, currently, no fewer than 21 RNAi-based

products are enrolled in clinical trials [39]; perhaps most

notable is the inhibitory molecule of miR-122 being

applied to treat hepatitis C virus (HCV) infection [40, 41].

miRNA profiling efforts have successfully identified the

most abundant miRNA species within skin, which includes

miR-152, miR-143, miR-126, miR-21, miR-27a, miR-214,

miR-16, miR-203, miR-125b, miR-34a, miR-205, miR-

27b, miR-30b, miR-125a, miR-191, miR-200a, miR-200b,

miR-200c, miR-141, miR-429, miR-199a, miR-199b, miR-

19b, miR-20, miR-17-5p, and miR-93 [42]. We highlight

research findings in which the expression patterns of many

of these miRNAs are altered as a result of different skin

conditions.

1.4 Differential miRNA Profiles

A variety of biological samples have been examined for

differential regulation of miRNA populations in response to

certain disease conditions, including cancer, bacterial

infections, and viral infections [43, 44]. Several technologies

such as quantitative polymerase chain reaction (qPCR),

miRNA arrays, and RNA-seq next-generation sequencing

(NGS) have been developed to evaluate the presence and

relative levels of miRNAs in cells, tissues, and other bio-

logical samples. Multiple studies have also shown that

miRNAs fluctuate in response to various disorders and dis-

eases of the skin. These distinct sets of miRNAs that are

detectably up- and downregulated have been explored for

their role in disease pathogenesis and their utility as

biomarkers for diagnostic assays. The cumulative data

regarding differentially expressed miRNAs in response to

skin conditions have allowed for miRNA profiles to be

developed, and these miRNAs represent potential thera-

peutic targets for these afflictions of the skin (Table 1).

In the case of skin damage from UV radiation, distinct

miRNA profiles have been identified for UV-A and UV-B

exposure. As shown in Table 1, a study that exposed pri-

mary keratinocytes to either UV-A or UV-B light for 6 h

and examined for changes in miRNA expression levels

revealed 27 and 28 miRNAs differentially regulated for

UV-A and UV-B light, respectively [45]. Ten miRNAs

were shared between the two groups. A separate study (not

shown in Table 1) exposed keratinocytes to UV-B for

different durations (4 and 24 h) and saw four unique

miRNA profiles develop: miRNAs that increased at 4 h but

decreased at 24 h, miRNAs that decreased at 4 h but

increased at 24 h, miRNAs that consistently increased at 4

and 24 h, and miRNAs that continued to decrease from 4 to

24 h [46]. The first group comprised the following miR-

NAs: miR-326, miR-423-5p, miR-193b, and miR-542-5p.

The second group consisted of miR-26a, let-7c, let-7f,

miR-26a-2, miR-543, and miR-487b. The third group saw

consistent upregulation of miR-31, miR-24, miR-27b, let-

7a, let-7b, let-7g, miR-200b, miR-125b, miR-27a, miR-

23a, miR-98, miR-221, miR-186, miR-30a, miR-22, miR-

96, miR-16, miR-18b, miR-34a, miR-93, miR-185, miR-

197, miR-365, miR-23b, and miR-29a. Finally, the last

group saw overall downregulation of miR-489, miR-138-1,

miR-138-2, miR-23a, miR-296-5p, miR-376b, miR-493,

miR-126, and miR-143. To add another layer to the story, a

different profile was detected when fibroblasts were

exposed to UV-A (Table 1), where upregulation of miR-

365, miR-30b, miR-30c, miR-148a, and miR-199a-5p, as

well as the downregulation of miR-1246, miR-146a, miR-

3613-3p, miR-218, miR-146b-5p, miR-4281, and miR-

181c, was detected [47].

Beyond UV irradiation, differential miRNA expression

profiles have been detected for several skin diseases,

including but not limited to psoriasis, atopic dermatitis, and

vitiligo (Table 1). Since the symptomology of psoriasis and

atopic dermatitis can overlap to a certain extent, the dis-

covery that the two conditions present distinct changes in

miRNA levels can be adapted to aid in the diagnosis of the

skin disease [48]. Importantly, this first report of distinctive

miRNA dysregulation between psoriasis and atopic der-

matitis was reinforced by subsequent studies that produced

lists of differentially regulated miRNAs that overlapped

considerably with what was previously identified and were

detected by methodologies [49–51]. As shown in Table 1,

psoriasis presented 29 differentially regulated miRNAs,

whereas atopic dermatitis only had 21. Of the miRNAs

identified in the study, eight were shared between the two

skin diseases. Among the dysregulated miRNAs detected in

all four studies, miR-203 was consistently observed to be

upregulated, fromwhich it can be inferred that miR-203 is an

important factor in the pathogenesis of psoriasis and could be

a potential therapeutic target. Both interleukin-17 receptor

(IL-17R) and IL-22R have been shown to be involved the

pathogenesis of psoriasis, which is interesting in that miR-

197 was found to be downregulated in the miRNA-profiling

effort with psoriatic skin (Table 1) and miR-197 is report-

edly antagonistic to IL-17R and IL-22R [48, 52, 53]. Addi-

tional studies have examined whether differentially

regulated miRNAs contribute to the effectiveness of
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photochemotherapy and phototherapy in treating psoriatic

skin. For example, examinations of dysregulated miRNAs in

response to treatment with UV-A and 8-methoxypsoralen

(so-called PUVA therapy) revealed that miR-4516 is

upregulated, which contributes to decreased expression of

UBE2N, STAT3, and CDK6 proteins, resulting in apoptosis

[54, 55]. Similarly, two reports observed the dysregulation of

miR-21, miR-125b, miR-146a, and miR-203 as a result of

narrow-band UV-B phototherapy [56, 57]. Cumulatively,

this demonstrates that not only do miRNAs become differ-

entially regulated as a result skin diseases, but also in

response to the treatments applied to combat these

conditions.

A separate study examined the differential miRNA

expression profile in circulating peripheral blood

mononuclear cells (PBMCs) in response to vitiligo, since

vitiligo is an auto-immune disorder [58]. Only four miR-

NAs were found to be dysregulated in PBMCs, where miR-

3940-5p was downregulated and miR-224-3p, miR-2682-

3p, and miR-4712-3p were upregulated. When the thy-

mosin-a-1 (T) immune modulator was introduced, the

miRNA dysregulation was reversed, with miR-3940-5p

Table 1 Signature microRNA profiles of different skin conditions

Skin condition UV-A (6 h) [45] UV-B (6 h) [45] UV-A (7 d) [47] Atopic dermatitis [48] Psoriasis [48] Vitiligo [58] Vitiligo ? T

[58]

Cell type Keratinocytes Fibroblasts Skin tissue Skin tissue PBMCs

miRNAs (-) 10a (-) 20b (-) 1246 (-) 122a (-) 125b (-) 3940-5p (-) 224-3p

(-) 18b (-) 23c (-) 146a (-) 133a-b (-) 99b (?) 224-3p (-) 2682-3p

(-) 98 (-) 29c (-) 3613-3p (-) 326 (-) 122a (?) 2682-3p (-) 4712-3p

(-) 99b (-) 30c (-) 218 (-) 215 (-) 197 (?) 4712-3p (?) 3940-5p

(-) 127-3p (-) 96 (-) 146b-5p (-) 483 (-) 100

(-) 130b (-) 98 (-) 4281 (-) 519a (-) 381

(-) 210 (-) 181c (-) 181c (-) 335 (-) 5186

(-) 212 (-) 218 (?) 365 (-) 133b (-) 524

(-) 323-3p (-) 301a (?) 30b (-) 515-5p (-) let-7e

(-) 330-3p (-) 323-3p (?) 30c (?) let-7i (-) 30c

(-) 376a (-) 330-3p (?) 148a (?) 29a (-) 365

(-) 487b (-) 335 (?) 199a-3p (?) 146a (-) 133b

(-) 494 (-) 376a (?) 222 (-) 10a

(-) 598 (-) 411 (?) 24 (-) 133a-b

(?) 23b (-) 494 (?) 193a (-) 22

(?) 96 (-) 503 (?) 199a (-) 326

(?) 132 (-) 532-5p (?) 27a (-) 215

(?) 191 (-) 598 (?) 21 (?) 146b

(?) 196b (-) 600 (?) 20a (?) 20a

(?) 224 (?) let-7c (?) 17-5p (?) 146a

(?) 340 (?) 139-5p (?) 106b (?) 31

(?) 376c (?) 191 (?) 200a

(?) 452 (?) 339-3p (?) 17-5p

(?) 484 (?) 361-5p (?) 30e-5p

(?) 501-5p (?) 362-5p (?) 141

(?) 574-3p (?) 376c (?) 203

(?) 886-5p (?) 455-3p (?) 142-3p

(?) 501-5p (?) 21

(?) 106a

The table shows the unique altered miRNA levels in response to specific skin conditions, including ultraviolet A and B damage, atopic dermatitis,

psoriasis, and vitiligo. Indicated are the cell source and the human miRNAs that are up (?) or down (-) regulated. For UV-treated cells, the

duration of exposure is indicated

miRNA microRNA, PBMCs peripheral blood mononuclear cells, UV ultraviolet, ?T treatment with thymosin-a-1

MicroRNA Therapies for Skin Conditions 427



upregulated and miR-224-3p, miR-2682-3p, and miR-

4712-3p downregulated.

Certainly, with time, the number of unique miRNA

profiles for different skin disorders and diseases will

expand, particularly as the technology improves. The

power of these findings comes from the ability to further

diagnose and understand these skin conditions as well as in

the identification of potential targets for therapeutic

approaches, which is detailed in the following section.

1.5 Therapeutic Application of miRNAs

As more miRNAs have been identified as key players in the

molecular pathogenesis of cancer and infectious diseases,

so too has the number of miRNAs implicated in the man-

ifestation of various skin disorders and diseases. With the

delineation of the role of each of these culprit miRNAs,

scientists have theorized ways to treat these skin conditions

through the application of miRNA mimics (miRNA

replacement therapy) and miRNA inhibitors (antagomiR

therapy) [29–32, 59]. We discuss some examples of natu-

rally occurring miRNAs that have been investigated for

their potential utility in combating a series of skin condi-

tions selected for this review, including aberrant pigmen-

tation, skin aging, UV damage to skin, acne, psoriasis, and

acute dermatitis (Table 2).

1.5.1 Skin Pigmentation

Multiple skin pigmentation disorders would potentially

benefit from miRNA-based therapeutic applications,

including vitiligo, albinism, aging spots (such as solar len-

tigo), freckles, and melasma. Many of these skin disorders

involve a dysregulation at one or more steps in the melanin

synthesis pathway. This multi-step pathway sees the amino

acid tyrosine enzymatically converted into dihydrox-

yphenylalanine then dopaquinone by tyrosinase (TYR),

which is followed by oxidation of dopaquinone into dopa-

chrome. Dihydroxyindole or dihydroxyindole-2-carboxylic

acid are formed from dopachrome and finally convert to

eumelanin. TYR and its related proteins (such as TYR-re-

lated protein 1[TRP1]) are further regulated by the

microphthalmia-associated transcription factor (MITF)

[60–63]. As shown in Table 2, multiple miRNAs have been

implicated in this signaling pathway. Both TYR and MITF

have been explored as therapeutic targets for de-pigmenta-

tion [64–67]. A 2008 report citedmiR-434-5p as an upstream

regulator of the expression of not only TYR but also hya-

luronidase (HYAL) [67]. This suggested that miR-434-5p

could potentially be utilized to induce de-pigmentationwhile

simultaneously increasing the moisture content of skin.

Another miRNA that could potentially be applied to

treating aberrant skin pigmentation is miR-211, which was

shown to target transforming growth factor (TGF)-b
receptor in an MITF-dependent fashion [64]. Others

include miR-25, miR-125b, miR-137, and miR-182, all of

which target MITF; miR-330-5p, which targets TYR; and

miR-145, which is a key regulator of many genes in the

pigmentation process, such as TYR, TRP1, and MITF

[65, 66, 68–71]. In cell culture, it was shown that miR-155

contributed to the pathogenesis of vitiligo by downregu-

lating multiple genes associated with melanogenesis,

including suppressor of cytokine signaling 1 (SOCS1) and

TRP1, and that increased levels of miR-155 contributed to

development of the skin disease [72]. In this particular

instance, an antagomiR of miR-155 could potentially assist

in the suppression of vitiligo symptoms by decreasing the

effective levels of endogenous miR-155 [72]. One can

certainly conclude from this small sampling of specific

miRNAs that multiple miRNA candidates have the poten-

tial to be translated into skin care products for the treatment

of aberrant pigmentation.

1.5.2 Skin Aging

Skin aging occurs via either intrinsic or extrinsic means

[39]. The intrinsic source of skin aging is the genetics of

the individual that change with chronological age. Extrin-

sic sources of aging are all of the environmental insults that

impact the skin over time, including but certainly not

limited to UV irradiation (photo-aging), particulate matter

accumulation (PM-25), and other environmental factors.

Much of aging and skin-aging research has revolved

around the cellular progression into senescence, where the

cell is no longer proliferating. Indeed, it has been shown

that the onset of age-related diseases can be delayed

through the removal of senescent cells. Evidence is accu-

mulating to show that specific miRNAs play key roles in

the development or reversal of cellular senescence and

could conceivably be adapted as therapies for skin aging.

Considerable evidence supports a significant role for

miR-29 in the aging of skin [73]; it is also a noted regulator

of collagen production in the skin [74, 75]. The down-

stream effects of miR-29 regulation appear to be centered

on tumor-suppressor protein p53 [37, 38, 76, 77]. These

findings have been the basis of an anti-skin-aging treatment

that incorporates an antagomiR of miR-29 [38]. Down-

regulation of miR-29a-3p was shown to substantially

decrease senescence in skin fibroblasts [78].

Other miRNAs that have reported involvement in the

aging process and may have therapeutic anti-skin-aging

applications include miR-17-5p, miR-21, miR-23a-3p,

miR-30a-5p, miR-34a, miR-130b, miR-138, miR-155,

miR-181a, and miR-181b. The term longevimiR has been

ascribed to the cell proliferation-promoting miR-17-5p,

which is downregulated in senescent cells [79]. Although
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Table 2 Skin therapeutic

applications of microRNAs
Skin therapeutic application microRNA Target(s) References

Psoriasis miR-203 SOCS3, p63 Wang et al. [145]

Huang et al. [103]

Bracke et al. [102]

Joyce et al. [49]

Sonkoly et al. [146]

Bostjancic et al. [147]

miR-146a IL-17, IRAK1, TRAF6 Srivastava et al. [99]

Meisgen et al. [148]

Sonkoly et al. [146]

Bostjancic et al. [147]

miR-217 GRHL2 Zhu et al. [101]

miR-99a

miR-99b

miR-100

IGF-1R Joyce et al. [49]

Lerman et al. [50]

Sonkoly et al. [48]

miR-125b FGFR2 Xu et al. [68]

miR-181b TLR4 Feng et al. [98]

miR-31 STK40 Wang et al. [145]

Xu et al. [100]

miR-197 IL-17R, IL-22R Sonkoly et al. [48]

Lerman et al. [53]

Elharrar et al. [52]

Atopic dermatitis miR-146a CCL5, IRAK1, TRAF6 Urgard et al. [109]

Rebane et al. [106]

Sonkoly et al. [146]

miR-155 CTLA-4 Sonkoly et al. [108]

UV-B damage miR-141 PTEN Li et al. [86]

Moisturizing miR-434-5p HYAL Chen et al. [142]

Pigmentation miR-434-5p TYR Wu et al. [67]

miR-145 SOX9, TYR, TRP1, MITF Dynoodt et al. [65]

miR-25 MITF Zhu et al. [69]

miR-125b TYR, DCT Kim et al. [149]

miR-155 SOCS1, IFITM1, TRP1 Sahmatova et al. [72]

miR-211 TGF-b receptor Dai et al. [64]

miR-330-5p TYR Rambow et al. [66]

miR-137 MITF Bemis et al. [70]

miR-182 MITF, FOXO3 Segura et al. [71]

Acne miR-143 TLR2 Xia et al. [95]

miR-105 TLR2 Benakanakere et al. [94]

Skin aging miR-29 p53 Li et al. [73]

miR-155 c-Jun Song et al. [84]

CCL5 chemokine ligand 5, CTLA-4 cytotoxic T-lymphocyte-associated antigen 4, DCT dopachrome tau-

tomerase, FGFR2 fibroblast growth factor receptor 2, FOXO3 Forkhead box protein O3, GRLH2 grainy

head like transcription factor 2, HYAL hyaluronidase, IFITM1 interferon induced transmembrane protein 1,

IGF-1R insulin-like growth factor-1 receptor, IL interleukin, IRAK1 interleukin-1 receptor associated

kinase 1, miRNA microRNA, MITF microphthalmia-associated transcription factor, PTEN phosphatase and

tensin homolog, SOCS suppressor of cytokine signaling, SOX9 Sry-related high mobility group protein 9,

STK40 serine/threonine kinase 40, TGF transforming growth factor, TLR toll-like receptor, TRAF6 tumor

necrosis factor receptor associated factor 6, TRP1 TYR-related protein 1, TYR tyrosinase, UV ultraviolet
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miR-21 has been described as having significant oncogenic

potential, one report defined a role for it in the development

of cellular senescence in endothelial cells with potential

applicability to other cell and tissue types [80]. The

hyaluronan synthase 2 (HAS2) gene is targeted by miR-

23a-3p in human skin samples and fibroblasts, which has

implications for the relative moisture content of the skin

[81]. Senescent skin fibroblasts had upregulated miR-23a-

3p, whereas non-senescent cells had much reduced levels

of this miRNA. In the case of miR-34a, senescent fibrob-

lasts showed its upregulation, which targeted histone

deacetylase sirtuin-1 (SIRT1) that resulted in a downstream

increase in p53-driven senescence [82, 83]. Similarly,

another report found that downregulation of miR-29a-3p,

miR-30a-5p, and miR-34a led to reduced senescence in

skin fibroblasts [78]. With respect to photo-aging of the

skin, miR-155 was observed to be downregulated in dermal

fibroblasts that were exposed to UV-A, whereas c-Jun

expression increased. It was revealed that miR-155 directly

targets c-Jun and that miR-155 potentially counter acts the

proliferative potential of UV-A-induced activation of c-Jun

[84]. Finally, primary keratinocytes entering replicative

senescence showed increased levels of miR-138, miR-

181a, and miR-181b, all three of which directly targeted

SIRT1 [85]. The same report also showed that miR-130b

was upregulated in senescent primary keratinocytes, which

targeted the p63 protein [85].

1.5.3 UV Damage

As described in the miRNA profile section of this review,

several dysregulated miRNAs have been reported to be up-

or downregulated in response to UV-A- and UV-B-induced

skin damage. These same miRNAs have also been explored

for their potential to repair UV-damaged skin. Among

these miRNAs is miR-141, which has several documented

targets, among them the anti-proliferative phosphatase,

phosphatase and tens in homolog (PTEN) (Table 2) [86].

Several compounds have been tested for protective

effects against UV-B-induced skin damage in skin ker-

atinocytes (specifically the HaCaT keratinocyte cell line).

For example, arctiin reportedly provides photo-protection

to HaCaT cells from UV-B light by stimulating an alter-

ation in the expression of certain miRNAs [87–89]. These

reports saw upregulation of miR-125a-3p, miR-205-3p,

miR-21-3p, and miR-29b-1-5p and downregulation of 62

distinct miRNAs. Troxerutin is another tested material that

also effected a change in miRNA expression patterns: miR-

125a-3p, miR-205-3p, miR-21-3p, miR-34b-5p, and miR-

181a-2-3p were upregulated and 63 miRNAs were down-

regulated [90, 91]. Notably, both compounds offering

photo-protective effects induced changes in the abundance

of similar arrays of miRNA species.

1.5.4 Acne

Skin acne afflicts more than 600 million people globally

and frequently ranks as the eighth most common disease

among humans. Acne (or acne vulgaris) presents symptoms

over a long duration that include greasy skin, pimples,

whiteheads, blackheads, and occasional scarring of the skin

[92, 93]. These symptoms present when skin oil and dead

skin material clog hair follicles. Scientists estimate that

more than 80% of all cases of acne vulgaris have a genetic

route cause, often implicating tumor necrosis factor (TNF)-

a and IL-1-a. TNF-a was shown to be post-transcription-

ally regulated by miR-105 in keratinocyte cell culture [94],

which modulated inflammatory signaling through TLR2

and TLR4 (Table 2). Another potential causative factor is

the presence of an anaerobic bacterial species on skin

called Propionibacterium acnes, though its specific role in

acne development has not been fully elucidated. Intrigu-

ingly, it appears that a combination of both genetic factors

and P. acnes can contribute to the manifestation of acne

vulgaris, with a recent report citing the involvement of

miR-143 in P. acnes-induced acne manifestation [95]. In

the study, Staphylococcus epidermidis activated TLR2,

which stimulated expression of miR-143 that led to a

biofeedback loop, where miR-143 targeted the TLR2

mRNA for downregulation (Table 2). The miR-143-in-

duced TLR2 downregulation subsequently abrogated the P.

acnes-stimulated skin inflammation. As mentioned, miR-

105 was demonstrated to also target TLR2 in keratinocytes,

presenting yet another miRNA that could conceivably be

translated into an acne therapeutic [94].

1.5.5 Psoriasis

Psoriasis represents a severe auto-immune disease of the

skin that is often characterized by abnormal patches of red,

itchy, scaly skin. More than 90% of all cases of psoriasis

can be classified as plaque psoriasis (or psoriasis vulgaris),

where patients present with red patches topped with white

scales. Typically, this condition is treated with topical

formulas containing either or both corticosteroids and

vitamin D combined with various moisturizers and emol-

lients. Evidence points to psoriasis being a genetic disease

that is precipitated by an environmental insult. As an auto-

immune disease, the genetic components have been linked

to multiple immune system-related genes, including but not

limited to IL-23R, IL-12ß, and the locus of the major

histocompatibility complex (MHC) [96, 97]. As post-

transcriptional gene regulators, miRNAs have also been

explored as factors in this genetic skin condition. Several

miRNAs have been reportedly linked to psoriasis, includ-

ing miR-203a, miR-146a, miR-217, miR-99a, miR-181b,

miR-31, and miR-125b (Table 2) [50, 68, 98–103].
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The most highly expressed miRNA in psoriatic skin

keratinocytes is miR-31, which directly targets serine/

threonine kinase 40 (STK40), noted for antagonizing pro-

inflammatory nuclear factor (NF)-jB signaling, thus

demonstrating the inflammation-inducing potential of miR-

31 [100]. This is further reinforced by the finding that TGF-

b1 stimulates upregulation of miR-31 [100]. In contrast,

many of the aforementioned miRNAs (Table 2) are

downregulated in psoriatic skin as they promote cellular

differentiation and are antagonistic to the aberrant prolif-

eration and inflammation observed with psoriasis. For

example, miR-99a, miR-125b, and miR-217 target pro-

proliferative factors insulin-like growth factor-1 receptor

(IGF-1R), fibroblast growth factor receptor 2 (FGFR2), and

grainy head-like transcription factor 2 (GRLH2), respec-

tively [50, 68, 101]. Therefore, hypothetically, miRNA-

replacement therapy using mimics of miR-99a, miR-125b,

and miR-217 could conceivably be used to treat psoriasis.

Another investigation showed that the application of miR-

146a mimics could ameliorate the inflammatory symptoms

of psoriasis through targeting of IL-17 [99]. Similarly,

miR-181b demonstrated anti-inflammatory activity through

the targeting of toll-like receptor 4 (TLR4) [98]. With each

new miRNA discovered to be a player in the molecular

pathogenesis of psoriasis, a new target is added to the

arsenal of potential miRNA-based treatments for the dis-

ease. Furthermore, as an example of how RNAi can

potently affect the pathogenesis of psoriasis, a group tested

the involvement of a cellular protein, insulin-like growth

factor-binding protein 7 (IGFBP7), which had been

observed at decreased levels in psoriatic skin, by trans-

fecting keratinocytes with an siRNA targeted to the

IGFBP7 mRNA [104]. Transfection with the IGFBP7

siRNA resulted in the onset of psoriasis-like effects in the

keratinocyte culture. As such, it is conceivable that an

antagomiR to a naturally occurring miRNA targeting the

IGFBP7 mRNA would increase endogenous levels of

IGFBP7 and potentially diminish the psoriatic pathology.

1.5.6 Atopic Dermatitis

Atopic dermatitis (or atopic eczema) is a skin disorder

similar to but distinct from psoriasis and other forms of

dermatitis and is characterized by itchy, red, swollen, and

cracked skin. This skin disorder is likely to affect nearly

20% of the population during their life and, like psoriasis,

there is believed to be a genetic element to the condition.

At least two miRNAs have been identified as playing a role

in the molecular pathogenesis of this disorder: miR-146a

and miR-155 (Table 2) [105–108]. Two different groups

have found miR-155 to be overexpressed in patients with

atopic dermatitis, where it targeted cytotoxic T-lympho-

cyte-associated antigen 4 (CTLA-4). In the case of miR-

146a, it was reported that the NF-jB pro-inflammatory

signaling pathway was disrupted by miR-146a targeting

chemokine ligand 5 (CCL5). It was then concluded that

both miRNAs had the potential to be developed into ther-

apeutics to combat atopic dermatitis, and efforts are

already underway for an miR-146a-based application

[109].

2 Topical miRNA Delivery Platforms

A variety of methodologies are currently being developed

for the deployment of miRNA-based therapeutics for

multiple skin diseases and disorders. These different

approaches could be distilled down to two broad cate-

gories: topical and systematic delivery. Topical delivery

can be further divided into physical and biochemical

delivery systems. To thoroughly review all of the afore-

mentioned strategies would be an enormous task; therefore,

discussion in this review is limited to advances in bio-

chemical vehicles for topical delivery of miRNA-based

therapeutics. Topical-based approaches are attractive

because the treatment is applied directly to the affected

tissue while avoiding the dilution and off-target effects

often associated with systemic administration of thera-

peutic molecules. Furthermore, topical applications can be

performed by the patient without professional assistance,

which also lends to the technology being utilized by both

pharmaceutical and cosmetic industries. However, topical-

based delivery systems are not without caveats, which

include but are not limited to the need for consistent

application for treatment effectiveness and the difficulty in

administering a sustained or delayed therapeutic release.

Despite some drawbacks, topical treatments incorporating

siRNAs or miRNAs represent a new paradigm in com-

bating skin conditions, where in lieu of bio-active com-

pounds being utilized to repair skin tissue, the cells of the

skin are able to fix themselves by being provided the

genetic instructions to do so.

2.1 Liposomes

Conventional liposomes are frequently employed for the

deployment of miRNAs and other RNAi molecules in both

in vitro and in vivo settings, but these lipid-based carrier

vehicles are usually introduced by injection, not by topical

application. The concept of topical delivery of an RNAi-

based or other nucleic acid-based therapeutic is attractive

for multiple reasons: (1) the target site of the disease state

is directly accessible, (2) the release of the treatment is

easily controlled, (3) treatment efficacy and/or side effects

resulting from treatment are easily observed, (4) the

treatment is not diluted as it can be with systemic
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introduction, and (5) off-target effects are minimized.

Despite these advantages, topically applied RNAi-based

therapeutics have had difficulty penetrating the stratum

corneum barrier of the skin [110, 111].

To address this problem, certain groups have explored

the preparation of ultra-deformable liposomes (UDLs) or

elastic liposomes that can effectively squeeze through the

pores of the skin [112]. Collectively, these research efforts

to produce UDLs have led to the development to two broad

categories of specialized liposomes with augmented skin

penetration capability: ethosomes and transfersomes. As

the name would suggest, ethosomes represent liposomes

with ethanol included in their composition as a penetration

enhancer. Alternatively, transfersomes utilize an edge

activator, often a single-chain surfactant such as sodium

cholate (SC) or Tween 80 to allow for greater deforma-

bility. One effort to marry UDL technology to the topical

delivery of RNAi-based therapeutics resulted in the pro-

duction of surfactant-ethanol-cholesterol-osomes (SECo-

somes) for the delivery of siRNAs across the skin to

epidermal cells (Table 3) [113, 114]. The SECosomes

comprised a cationic lipid, 2,3-dioleoyloxy-propyl-

trimethylammonium chloride (DOTAP); a helper lipid,

cholesterol (Chol); a single-chain surfactant (edge activa-

tor), SC; and ethanol (penetration enhancer) [115]. This

particular formulation represents a combined approach,

essentially transethosomes, which have shown enhanced

topical delivery efficiency of other molecules [116]. While

this lipid formulation improved the transfection efficiency

of siRNAs in the study, its skin penetration was limited to

the uppermost stratum corneum. Later, the same group

attempted to optimize their topical RNAi delivery system

by altering the chemistry of the elastic liposomes by

eliminating the SC and adding another helper lipid, 1,2-

dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). The

most successful alteration from this study produced a

liposome with DOTAP, DOPE, Chol, and ethanol

(Table 3) [117]. Indeed, this lipid substitution improved

the delivery efficiency of multiple RNAi-based therapeu-

tics, including siRNAs, pre-miRNAs, and antagomiRs, and

improved the degree of skin penetration without reaching

the dermal layer. The promise of this approach is rein-

forced by the augmented skin penetration being observed

both in vitro and with intact human skin.

Table 3 Topical delivery methods for both short interfering RNAs and microRNAs

Delivery platform Properties miRNA/

siRNA

Target Skin condition References

Liposomes—

‘‘transfersomes’’

Contain edge activator (sodium cholate) siRNA Myosin Va exon F

(melanosome

transport)

Pigmentation

change

Geusens

et al. [114]

Liposomes—

‘‘transethosomes’’

(SECosomes)

Contain edge activator (sodium cholate)

and penetration enhancer (ethanol)

siRNA Myosin Va exon F

(melanosome

transport)

Pigmentation

change

Geusens

et al. [115]

Liposomes—

‘‘transethosomes’’

(DDC642)

Contain edge activator (DOPE) and

penetration enhancer (ethanol)

siRNA

pre-

miRNA

antagomiR

Defensin Beta 4

(siRNA and pre-miR-

145)

Myosin Va exon F (pre-

miR-145)

SOCS3 (antagomiR to

miR-203)

Psoriasis

treatment

Desmet et al.

[150]

Cell-penetrating

peptides

TAT peptide siRNA RelA (NF-jB family

member)

Atopic

dermatitis

treatment

Uchida et al.

[151, 152]

SPACE peptide decorated ethosomes siRNA GAPDH NA Chen et al.

[125]

Self-delivering RNAi

(Accell)

Chemically modified siRNAs allowing for

greater stability and cellular uptake

siRNA LUC2P-2 (luciferase

reporter)

NA Hegde et al.

[141]

The multiple delivery vehicles and methods being explored for the topical administration of short interfering RNA/microRNA therapeutics and

their penetration through the barrier of the stratum corneum of the upper epidermis

GAPDH glyceraldehyde 3-phosphate dehydrogenase, miRNAs microRNAs, NA not applicable, NF nuclear factor, RNAi RNA interference,

siRNAs short interfering RNAs, SOCS suppressor of cytokine signaling, SPACE skin penetrating and cell entering, TAT trans-activating

transcription activator
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2.2 Cell-Penetrating Peptides

Cell-penetrating peptides (CPPs) have also been explored

in some instances for their ability to bind nucleic acids

covalently or non-covalently and facilitate their entry

through the skin [118]. Much of the evidence to date

supports non-covalent binding of siRNAs and miRNAs to

CPPs as the more robust approach with a greater biological

response [119]. The three best studied examples are the

trans-activating transcription activator (TAT) peptide,

poly-arginine (poly-R), and the skin penetrating and cell

entering (SPACE) peptide. The TAT from the human

immunodeficiency virus (HIV) represents the first CPP to

be discovered (Table 3) [120–123]. Three mechanisms

have been proposed to account for the ability of CPPs to

penetrate the cell plasma membrane: through a cell-medi-

ated endocytosis pathway, direct physical penetration of

the plasma membrane, or through a transition state that

allows translocation of the peptide and its cargo.

Later studies of CPPs revealed a minimal peptide

domain necessary for cell penetration, which frequently

involved a series of positively charged amino acids,

including arginine and lysine. Poly-R peptides conjugated

covalently or non-covalently to a nucleotide cargo mole-

cule such as siRNA have been studied in both in vitro and

in vivo settings with mixed results [124]. Another example

of a CPP is the SPACE peptide. The conjugation of the

SPACE peptide to siRNAs targeted to specific proteins in

skin cells has been tested for efficacy as a topical appli-

cation multiple times (Table 3) [125, 126]. In one

notable instance, an siRNA targeted to the MITF tran-

scription factor, which is important in the molecular

pathogenesis of melasma, was conjugated to the SPACE

peptide and applied in vivo to the skin in a cream that

effectively reduced the levels of TYR and TRP1, producing

a marked decrease in melanin content in skin lesions [127].

The cumulative knowledge obtained from these research

efforts with CPPs and RNAi-based therapeutics could be

applied to the development of an optimized means of

topically delivering RNAi-based therapeutics for skin

conditions.

2.3 Chitosan

Chitosan protein has been investigated for its usage in a

variety of bio-medical applications, particularly in the area

of wound healing [128, 129]. Chitosan as a material brings

a lot of advantages in that it is biocompatible, biodegrad-

able, and antimicrobial and has been found to be non-toxic

both in vitro and in vivo. Moreover, the US FDA has

already approved its use for wound-healing applications.

Its polycationic properties have led to chitosan being

explored in many instances to deliver DNA, siRNA, and

miRNAto various types of cells, though the transfection

efficiency of chitosan reagents is reportedly low [130–132].

The utility of chitosan–miRNA complexes for RNAi

therapy has been extensively studied in a variety of cell

types [133–136]. Multiple investigations have attempted to

improve the low transfection efficiency of the chitosan-

based siRNA/miRNA complexes through the incorporation

of additional components such as hyaluronic acid and CPPs

[137, 138]. Therefore, modified chitosan might ultimately

become a favored delivery vehicle for topical RNAi

therapy.

2.4 Self-Delivering RNAi

Delivery of naked siRNAs and miRNAs to the skin does

not result in efficient skin penetration and transfection of

the desired skin cells. This is due to a combination of

factors, including the negative charge of the siRNA and

miRNA molecules, their relatively large size (approxi-

mately 13–14 kD), and the presence of nucleases on the

skin. The chemical modification of the siRNAs and miR-

NAs themselves to be more stable and amenable to skin

penetration and transfection has also been explored for

topical RNAi delivery. One reported success is the Accell

self-delivering RNAi system (produced by Dharmacon,

Lafayette, CO, USA), which obviates the need for trans-

fection reagents, viruses, and specialized instruments for

siRNA delivery. Through a proprietary series of chemical

modifications, the Accell siRNA molecules exhibit

increased efficiency at reducing gene expression of tar-

geted mRNA transcripts as well as increased stability,

target specificity, and cell uptake. This system has already

been employed to transfect keratinocytes in cell culture

[139] as well as skin in vivo (Table 3) [140, 141].

Although proven effective, the cost and proprietary nature

of this technology limit its deployment in the skin care

industry. Potentially, more cost-effective measures will be

available for the production of miRNA mimics as well as

antagomiRs in the future, which would certainly revolu-

tionize how these molecules could be utilized for topical

application of RNAi therapeutics.

3 Concluding Remarks

The recent advances in the identification of miRNAs that

contribute to various skin conditions open up a whole new

arena of skin care therapeutics. From moisturizing, photo-

aging, and whitening to acne, dermatitis, and psoriasis, the

potential applications of miRNA-based and, more broadly,

RNAi-based, skin care products seem boundless. Two key

hurdles that need to be overcome for the translation of

miRNA research to skin care products are ensuring that
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there are no off-target effects of the miRNAs employed and

the development of an effective delivery system for the

miRNA therapeutic. Both obstacles are certainly sur-

mountable, and it is highly likely that miRNA-based skin

care products will soon be commercially available.

With respect to miRNA-based therapeutics producing

off-target effects, the further elucidation of the downstream

targets of different naturally occurring miRNAs will ulti-

mately provide enhanced predictive value. This particular

issue is especially important when considering the regula-

tory aspects of bringing a new therapeutic to the market.

Even siRNAs with their limited target promiscuity due to

their exquisite sequence complementarity requirement

have the potential to have side effects given how far

upstream these effector molecules are of multiple signaling

pathways. To that end, current miRNA-profiling efforts are

necessary and indispensable if RNAi-based treatments are

to be commercialized, allowing scientists and physicians to

accurately predict whether more harm than good would

result from the usage of a particular siRNA/miRNA mimic

or antagomiR. In some instances, off-target effects may

actually provide additional benefit as can be inferred from

miR-434-5p for skin care. This miRNA post-transcrip-

tionally targets TYR, which has utility in treating aberrant

skin pigmentation but also down-modulates expression of

HYAL, which can add a moisturizing benefit. Regardless,

efforts have already been described to limit the side targets

of miR-434-5p and allow for safe miRNA-induced reduc-

tion in TYR activity [67, 142]. Combining the knowledge

gleaned from miRNA-profiling efforts and the artificial

refinement and narrowing of the associated targets for a

particular miRNA will greatly improve the safety of RNAi-

based treatments.

Current experimental topical delivery platforms for

RNAi-based therapeutics described herein have attempted

to surmount the skin barrier either through novel lipid

chemistries allowing for ultra-flexible liposomes or through

the incorporation of skin-penetrating peptides into the

liposome bilayer. Topical application of prospective RNAi-

based treatments is an attractive mode of delivery for a

variety of reasons articulated in this review, and the

breakthrough vehicle will likely employ a combination of

the strategies outlined. Liposomes represent a well-devel-

oped technology, and large-scale production is possible

with relative ease. Similarly, peptide synthesis has been

thoroughly optimized and is quite cost effective. There-

fore, the production of peptide-modified ultra-flexible

liposomes for the enhanced penetration of RNAi effector

molecules into the skin should prove to be an economically

attractive platform for both cosmetic and pharmaceutical

industries.

A final consideration for the development and com-

mercialization of RNAi-based treatments for skin

conditions, and indeed for other types of disease, is that

these effector molecules allow for the targeting of disease

pathways that were previously undruggable by standard

treatment approaches [143]. Particularly when contem-

plating therapeutic strategies for genetic diseases, espe-

cially those manifesting from a single nucleotide

polymorphism, standard methodologies with conventional

drugs fall short [144]. The validation and scale-up design

of a cost-effective delivery system for siRNAs and miR-

NAs will be the critical factor in unleashing the power of

the RNAi-based therapeutics: a new class of treatments that

empower cells to repair themselves.
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